STATS DOESN'T SUCK! ~ CHAPTER 7.1

CHAPTER 7.1 | QUESTION 1

Consider the following data. The data shows the number of days patients stayed in a hospital.

Number of days stayed	Number of Patients
3	15
4	32
5	56
6	19
7	5

a) Use the relative frequency approach to construct a probability distribution of the number of days stayed in the hospital and show that it satisfies the required conditions.
b) Find the expected value of the number of days stayed.
c) Compute the variance.
d) Compute the standard deviation.

STATS DOESN'T SUCK! ~ CHAPTER 7.1

CHAPTER 7.1 | QUESTION 2

Three socks are selected, one at a time from a clothes drawer containing 6 black, 6 brown and 6 green socks. Let x represent the number of brown socks selected in 3 random selections from the drawer.
a) Express the probability distribution of X in tabular form.
b) What is the probability that at least one sock selected will be brown?
c) What is the probability that none of the three selected will be brown?
d) What is the expected number of brown socks selected?
e) Find $V(X)$
f) Find $E(4 X-2)$

STATS DOESN'T SUCK! ~ CHAPTER 7.1

CHAPTER 7.1 | QUESTION 3

A refrigerator holds 14 drinks: 8 sodas and 6 coolers. You select 3 drinks from the refrigerator. Let the random variable X be the number of sodas you get out of 3. Develop the probability distribution function of X.

CHAPTER 7.1 | Quiz

Question 1)

The weighted average of the possible values that a random variable X can assume, where the weights are the probabilities of occurrence of those values, is referred to as the:
a. variance.
b. standard deviation.
c. expected value.
d. None of these choices.

Question 2)

The number of accidents that occur annually on a busy stretch of highway is an example of:
a. a discrete random variable.
b. a continuous random variable.
c. expected value of a discrete random variable.
d. expected value of a continuous random variable.

Question 3)

A table, formula, or graph that shows all possible values a random variable can assume, together with their associated probabilities, is called a(n):
a. discrete probability distribution.
b. discrete random variable.
c. expected value of a discrete random variable.
d. None of these choices.

Question 4)

Which of the following are required conditions for the distribution of a discrete random variable X that can assume values \boldsymbol{x} ?
a. $0 \leq p\left(x_{i}\right) \leq 1 \quad$ for all x_{i}
b. $\sum p\left(x_{i}\right)=1$
all x ,
c. Both a and b are required conditions.
d. Neither a nor b are required conditions.

Question 5)

Which of the following is a discrete random variable?

a. The Dow Jones Industrial average.
b. The volume of water in Michigan Lakes.
c. The time it takes you to drive to school.
d. The number of employees of a soft drink company.

Question 6)

Which of the following is a continuous random variable?
a. The number of employees of an automobile company.
b. The amount of milk produced by a cow in one 24 -hour period.
c. The number of gallons of milk sold at Meijer grocery store last week.
d. None of these choices.

