Cŀ	HAPTER 5	CHAPTER 7								CHAPTER 10				
Methods of Collecting Data		Discrete Random Variables (Ch7) vs. Continuous Random Variables (Ch8)								Definitions				
NOTE: Both methods involve observations, but		Random variable A function or rule that assigns a number to each outcome of an experiment.								Point Estimator:	A single value that estimates an unknown population parameter.			
E A	observational study finds e relationship between anges that already exist. Easier to perform	Discrete random variable Values are countable, e.g. number of courses, number of sibling Continuous random variable Values are uncountable - typically measured quantities, e.g. heig								Interval	_		that estimate and unknown	
d iğ cl		Discrete Probability Distributions				Binomial Distribution				Estimator: population parameter. Qualities of a Good Estimator				
Obse	More difficult to draw cause/effect conclusions	Probability A table, formula, or graph that describes the			Is it a Binomial Experiment?				Hali and		ne average (expected) value of the estimator			
- A	from experiment requires you	distribution values of a random variable and the probability associated with these values Requirements for a Distribution of a Discrete				Fixed number of trials / observations (n). Each trial has two possible outcomes: success				Unbiased:		the population	ne population parameter being	
w <u>ii</u> .	o observe what happens when you make some sort of	Random Variable				and failure. 3. $P(success) = p$, $P(failure) = 1 - p$.				Consistency		stimator gets closer to the population neter as the sample size increases. unbiased estimators are available as		
	ange. Can be unethical Subjects randomly	1. $0 \le P(x) \le 1$ (for all x) 2. $\Sigma P(x) = 1$ (for all x)				4. The trials are independent of each other.				Relative	<u>'</u>			
	assigned to groups Possible to draw	Expected Value of X $E(X) = \mu = \sum_{all \ x} x P(x)$				Binomial Probability of (x) Number of Successes:				Efficiency: estimators, choose the one with less variability.				
cause/effect conclusions		(non-	binomial)			$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$				Interpreting a Confidence Interval				
Types of Samples Simple A sample selected in such a way that every possible sample with the same number of observations is equally likely to be		Variance of X $ (\text{non-binomial}) \qquad V(\mathbf{x}) = \sigma^2 = \sum_{all \ x} (x - \mu)^2 P(x) $ $ (\text{standard} $ Deviation of X $ (\text{non-binomial}) \qquad \sigma = \sqrt{\sigma^2} $				Mean or Expected X Variance of X Standard Deviation of X (Binomial) (Binomial) (Binomial)			"The mean is estimated to fall between (LCL*) and (UCL*). This type of estimation is correct (confidence level*)% of the time."					
							$\sigma^2 = np(1$			*Fill in the values				
		Example (Non-binomial)				Using the Binomial Table				Confidence Interval Estimator of μ				
chosen. Stratified Obtained by separating		Question:				Use the binomial tables whenever you can!			Lower Confidence Limit (LCL):		$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$			
Random Sample the population into mutually exclusive sets, or strata, and then drawing simple random samples from each stratum. Cluster Sampling of groups or clusters of elements.		Two balls are selected randomly without replacement from a jar containing 4 red balls and 6 black balls. Let X be the number of red balls selected. a) Give the probability distribution of x Outcomes: P(R) = 4/10 P(R) = 4/10 (3/9) = 0.1333 (2)				When can you? 1. The table has the same number of trials /			Upper Co	,		<u> </u>		
						observations (n) as in the question. 2. The table has a column with the exact				Limit (UCL):			$\bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	
						probability of succes (p) as in the question.			Sample Size (given t			$\left(\frac{Z_{\alpha}}{2}\right)$		
						P(x) is <u>NOT</u> listed on the table! $P(k)$ is			on error of estimation		$n = \left(\frac{B}{B}\right)$			
Sampling vs		P(B) = 6/9 P(RB) = (4/10)(6/9) = 0.2667 (1) P(B) = 6/10 P(B) = 5/9 P(BB) = (6/10)(4/9) = 0.2667 (1) P(B) = 5/9 P(BB) = (6/10)(5/9) = 0.3333 (0)			,		nt to find he table:		Com	mon Co	nfidence Levels and $Z_{lpha/2}$			
Non-Sampling Error					P(X < x)	P(k)	$P(k = \lceil x - 1 \rceil)$		$1-\alpha$	α	α/2	$z_{lpha/2}$		
Sampling	Difference between what a sample predicts and the	х	0	1	2	$P(X \le x)$	/	-		.90	.10	.05	z _{.05} =1.645	
Error	true population paramter. Occurs because a sample	P(x) 0.3333 2 x 0.2667 = 0.5334 0.1333			`	,			.95	.05	.025	$z_{.025} = 1.96$ $z_{.01} = 2.33$		
	is being used to make inferences about an entire	х	b) Find the expected value and variance of x			P(X = x) = P(k = [x]) - P(k = [x-1])			.99	.01	.005	$z_{.005} = 2.575$		
	population.	P(x) 0.3333 0.5334 0.1333 E(x)=μ xP(x) (0)(0.3333) (1)(0.5334) (2)(0.1333) =ΣxP(x)			$P(X \ge x) = 1 - P(k = [x - 1])$			Factors Affecting WIDTH of Confidence Intervals						
Sampling	Errors resulting from mistakes made when collecting data. Responses being recorded incorrectly Some participants not responding Biased sample				$P(X > x) = 1 - P(k = [x])$ $P(x_1 < X < x_2) = P(k = [x_2 - 1]) - P(k = [x_1])$ $P(x_1 \le X < x_2) = P(k = [x_2 - 1]) - P(k = [x_1 - 1])$			As sample size $n \ 1$ width $\ 1$ (GOOD!!!) As sample size $n \ 1$ width $\ 1$ (wide intervals are BAD) As confidence level $(1-\alpha) \ 1$ width $\ 1$ (loss of confidence is BAD) As confidence level $(1-\alpha) \ 1$ width $\ 1$ (loss of confidence is BAD)						
Error		$(x-\mu)^2$ 0.64 0.04 1.44 = $(x-\mu)^2 P(x)$ 0.2133 0.0213 0.1920 = 0.4266												
			1. $E(c) = c$ 1. $V(c) = 0$			$P(x_1 < X \le x_2) = P(k = [x_2]) - P(k = [x_1])$			As variance 1 width 1 (BAD: can't adjust variance) As variance 1 width 1 (BAD: can't adjust variance)					
$CT \wedge TC$		2. $E(X + c) = E(X) + c$ 2. $V(X + c) = V(X)$			$P(x_1 \le X \le x_2) - P(k = [x_2]) - P(k = [x_1])$ $P(x_1 \le X \le x_2) = P(k = [x_2]) - P(k = [x_1 - 1])$			As sample mean 1 width is unaffected						
21 A 1 2		3. $E(cX) = cE(X)$ 3. $V(cX) = c^2V(X)$ Normal Distribution Probabilities Ch.8 (x) example				$P(x_1 \le X \le x_2) = P(k = [x_2]) - P(k = [x_1 - 1])$ Ch.9 (x) example REVERSE Ch.8			As sample mean \(\draw{\pi}_{\pi} \) width is unaffected					
DOESN'T SUCK							20, σ =	(Given a	probabilty and	Probability of binomial expe	success in a		HAPTER 9	
CH	HAPTER 8	Given one or two boundaries, find the probability that x (or \bar{x}) is less than, greater than, or between them				at 24, n = 36. Find the probability that \bar{x} is $\mu = 20$, $\sigma = 4$			20%. Find the probability that the proportion of X shows the probabilities for all possible					
Probability Density Functions		less than, greater than, or between them.			greater than 25? What value of x separates the top 10%?			success in a sample of 400 sample means for a given sample size (n). Standard Error Mean Standard Error						
Continuous Random Variable			Draw the nori distribution.	mal	P(16 < x < 27	r)=?	P(x > 25) = ?	The table focuse on the bottom	P(x >?)=0.10	P(p̂ < 0.18)=?	$\overline{\setminus}$	$\mu_{\overline{X}} = \mu$	σ (standard deviation	
 uncountable (infinite) number of values 		_	• Label the n										$\sqrt{\frac{1}{n}}$ distribution)	
	obability of each dual value is virtually 0		Label (eachShade area	of interest	x=16 μ=20 x=27	μ=20	≅=25		μ=20 x=?	p̂=.18 p	=0.2	If X is norm	hal, then X is normal. If X is	
Probabil	ity Density Function		Convert (each to a z-score a			$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} = -\frac{\sigma}{2}$	$\frac{24}{\sqrt{26}} = 4$		requires we use	z =		1	l, then <i>X</i> is approx normal for large sample sizes.	
	probabilities the variable on different values	(Ch.8) $z = \frac{x - \mu}{2}$ $z = \frac{16 - 20}{4} = \frac{-4}{4} = -1$				$\overline{x} = u$ 1- 10=0 90				$\sqrt{\frac{p(1-p)}{n}}$		Convert X̄ to a z-s	Score: $Z = \frac{\overline{X} - \mu}{-\sqrt{-}}$	
Requirements: (range is $a \le x \le b$) 1. $f(x) \ge 0$ for all x between a and b		$\frac{\sigma}{\bar{x} - \mu}$ $z = \frac{27 - 20}{4} = \frac{7}{4} = 1.75$			$z = \frac{z}{\sigma_{\bar{x}}}$ $z = \frac{25 - 20}{1.00 \cdot 01} = 1.25$ $z = \frac{25 - 20}{1.00 \cdot 01} = \frac{z}{0.00} = \frac{0.01}{0.00} = \frac{0.01}{0.0$			z = 0.18 - 0	 = -1		Distribution of \bar{X}_1 - \bar{X}_2			
2. The total area under the curve between <i>a</i> and <i>b</i> is 1.0		(Ch.9) $z = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}}$ $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$						$\sqrt{\frac{0.20(1-400)}{400}}$		Z	$\dot{z} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{(\bar{x}_1 - \bar{x}_2) - (\mu_2 - \mu_2)}$			
Uniform Density Function		STEP	$\sigma_{\overline{x}}$ \sqrt{n} Look up (each) area on		Z .00 .01	Z .00 .01	.05 .06			Z .00 .01			$Z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	the correct (-	,+) z-table:	Z0!				μCh. 8	-3.0 -1.1			Distribution of p	
		-1.1 0.0 -1.0							-1.0 .1587		provided t	$\hat{\mathbf{p}}$ is approx normally distributed provided that np and $n(1-p)$ are		
		1.7 .959 1.8							greater than or equal to 5. Expected $\hat{\mathbf{p}}$ Standard E					
$P(x_1 < X < x_2) =$ $= Base \times Height$ $= (x_1 - x_2) \times \frac{1}{b - a}$		STEP F	P('less than') = area P('greater than')=1 - area P('between')= big - small area area		P(16 < x < 27) =	$P(\overline{x} > 25) = 1$. – area	x = (1.28)	$x = z\sigma + \mu$ x = (1.28)(4) + 20		- area	$E(\hat{p}) = p$	$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	
		4				= 1 -	– 0.8944 .1056	X = 23.12		$P(\hat{p} < 0.18) = P(\hat{p} < 0.18) = 0.18$		Convert	•	
		F			= 0.8012	_ 0.			from the			p̂ to a z-score:	$Z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}} \hat{p} = \frac{X}{n}$	